Source file eulerian.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

module type G = sig
  type t
  val is_directed : bool
  module V : Sig.COMPARABLE
  module E : Sig.EDGE with type vertex = V.t
  val iter_edges_e : (E.t -> unit) -> t -> unit
end

(** The following implements Hierholzer's algorithm.

    It is sketched as follows:

    1. make a round trip from a random vertex, by following random
       edges until we get back to the starting point (it will, as we
       first check that all vertices have even degrees).

    2. if any vertex along this cycle still has outgoing edges, pick one
       and make another round trip from it, and then join the two cycles
       into a single one. Repeat step 2 until all edges are exhausted.

    The implementation makes use of the following:

    - A table, called `out` in the following, that maps each vertex to
      outgoing edges not yet used in the Eulerian path.

    - In order to achieve optimal complexity, paths are built as
      doubly-linked lists, so that we can merge two cycles with a common
      vertex in constant time. This is type `dll` below.
*)

module Make(G: G) = struct

  open G

  let rev e =
    E.create (E.dst e) (E.label e) (E.src e)

  module H = Hashtbl.Make(V)

  type out = E.t H.t H.t

  let add_out_edge out x y e =
    let s = try H.find out x
            with Not_found -> let s = H.create 4 in H.add out x s; s in
    H.add s y e

  (** compute the table of outgoing edges *)
  let setup g : int * out =
    let nbe = ref 0 in
    let out = H.create 16 in
    let add e =
      incr nbe;
      let x = E.src e and y = E.dst e in
      add_out_edge out x y e;
      if not is_directed && not (V.equal x y) then
        add_out_edge out y x (rev e) in
    iter_edges_e add g;
    !nbe, out

  exception Found of V.t
  let any h =
    try H.iter (fun v _ -> raise (Found v)) h; assert false
    with Found v -> v, H.find h v

  type dll = { mutable prev: dll; edge: E.t; mutable next: dll }

  let remove_edge out e =
    let remove h x y =
      let s = H.find h x in
      assert (H.mem s y);
      H.remove s y;
      if H.length s = 0 then H.remove h x in
    let v = E.src e and w = E.dst e in
    remove out v w

  let self e = V.equal (E.src e) (E.dst e)

  let remove_edge edges e =
    remove_edge edges e;
    if not is_directed && not (self e) then remove_edge edges (rev e)

  let any_out_edge out v =
    assert (H.mem out v);
    let s = H.find out v in
    assert (H.length s > 0);
    let _, e = any s in
    remove_edge out e;
    e

  (** build an arbitrary cycle from vertex [start] *)
  let round_trip edges start =
    let e = any_out_edge edges start in
    let rec path = { prev = path; edge = e; next = path } in
    let rec tour e =
      let v = E.dst e.edge in
      if V.equal v start then (
        path.prev <- e;
        path
      ) else (
        let e' = { prev = e; edge = any_out_edge edges v; next = path } in
        e.next <- e';
        tour e'
      ) in
    tour path

  let connect e e' =
    e.next <- e';
    e'.prev <- e

  (** build an Eulerian cycle from vertex [start] *)
  let eulerian_cycle out start =
    let todos = H.create 8 in (* vertex on cycle with out edges -> cycle edge *)
    let todo e =
      let v = E.src e.edge in
      if H.mem out v then H.replace todos v e else H.remove todos v in
    let rec update start e =
      todo e;
      if not (V.equal (E.dst e.edge) start) then update start e.next in
    let path = round_trip out start in
    update start path;
    while H.length todos > 0 do
      let v, e = any todos in
      H.remove todos v;
      assert (H.mem out v);
      let e' = round_trip out v in
      update v e';
      let p = e.prev in
      assert (p.next == e);
      let p' = e'.prev in
      assert (p'.next == e');
      connect p e';
      connect p' e;
    done;
    path

  let list_of path =
    let rec convert acc e =
      if e == path then List.rev acc else convert (e.edge :: acc) e.next in
    convert [path.edge] path.next

  let mem_edge out x y =
    try H.mem (H.find out x) y with Not_found -> false

  let out_degree out x =
    try H.length (H.find out x) with Not_found -> 0

  let undirected g =
    let nbe, out = setup g in
    let odds = H.create 2 in
    let check v s =
      let d = H.length s in
      let d = if H.mem s v then d - 1 else d in
      if d mod 2 = 1 then H.add odds v () in
    H.iter check out;
    let n = H.length odds in
    if n <> 0 && n <> 2 then invalid_arg "Eulerian.path (bad degrees)";
    let cycle = n = 0 in
    let path =
      if cycle then
        if nbe = 0 then []
        else let v, _ = any out in list_of (eulerian_cycle out v)
      else (
        (* we have two vertices x and y with odd degrees *)
        let x, _ = any odds in
        H.remove odds x;
        let y, _ = any odds in

        if mem_edge out x y then (
          (* there is an edge x--y => it connects 1 or 2 Eulerian cycles *)
          let xy = H.find (H.find out x) y in
          remove_edge out xy;
          match out_degree out x, out_degree out y with
          | 0, 0 -> [xy]
          | _, 0 -> rev xy :: list_of (eulerian_cycle out x)
          | 0, _ -> xy :: list_of (eulerian_cycle out y)
          | _ ->
              let py = eulerian_cycle out y in
              (* caveat: the cycle from y may exhaust edges from x *)
              if out_degree out x = 0 then xy :: list_of py
              else list_of (eulerian_cycle out x) @ xy :: list_of py
                (* a bit of a pity to use list concatenation here,
                   but this does not change the complexity *)
        ) else (
          (* no edge x--y => add one, build a cycle, then remove it *)
          let dummy = E.label (snd (any (H.find out x))) in
          let xy = E.create x dummy y in
          H.add (H.find out x) y xy;
          H.add (H.find out y) x (rev xy);
          let p = eulerian_cycle out x in
          let rec find e = (* lookup for x--y, to break the cycle there *)
            let v = E.src e.edge and w = E.dst e.edge in
            if V.equal v x && V.equal w y ||
               V.equal v y && V.equal w x then e else find e.next in
          let start = find p in
          List.tl (list_of start)
        )
      )
    in
    (* check that all edges have been consumed *)
    if H.length out > 0 then invalid_arg "Eulerian.path (not connected)";
    path, cycle

  let directed g =
    let delta = H.create 16 in (* out - in *)
    let add v d =
      H.replace delta v (d + try H.find delta v with Not_found -> 0) in
    let add e =
      add (E.src e) 1; add (E.dst e) (-1) in
    iter_edges_e add g;
    let start = ref None and finish = ref None in
    let check v = function
      | 1 when !start = None -> start := Some v
      | -1 when !finish = None -> finish := Some v
      | 0 -> ()
      | _ -> invalid_arg "Eulerian.path (bad degrees)" in
    H.iter check delta;
    let nbe, out = setup g in
    let path, cycle = match !start, !finish with
      | None, None when nbe = 0 ->
          [], true
      | None, None ->
          let v, _ = any out in list_of (eulerian_cycle out v), true
      | Some s, Some f ->
          (* add one edge f->s, build a cycle, then remove it
             note: there may be already an edge f->s
                   if so, we are adding *a second one* and we are careful
                   about removing this one, not the other *)
          let dummy = E.label (snd (any (H.find out s))) in
          let fs = E.create f dummy s in
          add_out_edge out f s fs;
          let p = eulerian_cycle out s in
          let rec find e = (* lookup for f->s, to break the cycle there *)
            if e.edge == fs then e else find e.next in
          let start = find p in
          List.tl (list_of start), false
      | Some _, None
      | None, Some _ ->
          assert false (* since the sum of all deltas is zero *)
    in
    (* check that all edges have been consumed *)
    if H.length out > 0 then invalid_arg "Eulerian.path (not connected)";
    path, cycle

  let path =
    if is_directed then directed else undirected

  let cycle g =
    let p, c = path g in
    if not c then invalid_arg "Eulerian.cycle";
    p

end