1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
(** Code follows Don Knuth's algorithm
from ``Axioms and hulls'' (LNCS 606, Springer-Verlag, 1992), pp. 73-77.
Some code and comments are taken from the Stanford Graph Base,
file [gb_plane].
*)
module type CCC = sig
type point
val ccw : point -> point -> point -> bool
val in_circle : point -> point -> point -> point -> bool
end
module type Triangulation = sig
module S : CCC
type triangulation
val triangulate : S.point array -> triangulation
val iter : (S.point -> S.point -> unit) -> triangulation -> unit
val fold : (S.point -> S.point -> 'a -> 'a) -> triangulation -> 'a -> 'a
val iter_triangles :
(S.point -> S.point -> S.point -> unit) -> triangulation -> unit
end
module Make (S : CCC) = struct
module S = S
type point = Point of int | Infinity
type arc = {
mutable vert : point;
mutable next : arc;
mutable inst : node ref;
mate : int
}
and node =
| Branch of int * int * node ref * node ref
| Terminal of arc
type triangulation = {
points : S.point array;
arcs : arc array;
last_used_arc : int
}
let rec dummy_arc =
{ vert = Infinity; next = dummy_arc;
inst = ref (Terminal dummy_arc); mate = -1 }
let make_arc n i =
{ vert = Infinity; next = dummy_arc;
inst = ref (Terminal dummy_arc); mate = 6 * n - 7 - i }
let finite = function Point p -> p | Infinity -> assert false
let flip c d e t'' p n n' =
let e' = e.next in
let c' = c.next in
let c'' = c'.next in
e.next <- c;
c.next <- c'';
c''.next <- e;
c''.inst <- n; c.inst <- n; e.inst <- n;
c.vert <- Point p;
d.next <- e';
e'.next <- c';
c'.next <- d;
c'.inst <- n'; e'.inst <- n'; d.inst <- n';
d.vert <- Point t''
let triangulate points =
let ccw p q r = S.ccw points.(p) points.(q) points.(r) in
let in_circle p q r s =
S.in_circle points.(p) points.(q) points.(r) points.(s)
in
let n = Array.length points in
if n < 2 then invalid_arg "triangulate";
let arcs = Array.init (6 * n - 6) (make_arc n) in
let mate i = 6 * n - 7 - i in
let u = 0 in
let v = 1 in
let a1 = arcs.(0) in
let a2 = arcs.(1) in
let a3 = arcs.(2) in
let b1 = arcs.(mate 0) in
let b2 = arcs.(mate 1) in
let b3 = arcs.(mate 2) in
let l1 = ref (Terminal a2) in
let l2 = ref (Terminal b3) in
a1.vert <- Point v; a1.next <- a2; a1.inst <- l1;
a2.vert <- Infinity; a2.next <- a3; a2.inst <- l1;
a3.vert <- Point u; a3.next <- a1; a3.inst <- l1;
b1.vert <- Point u; b1.next <- b3; b1.inst <- l2;
b2.vert <- Point v; b2.next <- b1; b2.inst <- l2;
b3.vert <- Infinity; b3.next <- b2; b3.inst <- l2;
let l0 = ref (Branch (u, v, l1, l2)) in
let j = ref 2 in
for p = 2 to n - 1 do
let rec step_T1 l p = match !l with
| Terminal al ->
l, al
| Branch (pl, ql, al, bl) ->
step_T1 (if ccw pl ql p then al else bl) p
in
let l, al = step_T1 l0 p in
let a = al in
let b = a.next in
let c = b.next in
let q = a.vert in
let r = b.vert in
let s = c.vert in
j := !j + 3;
let aj = arcs.(!j) in
let aj_1 = arcs.(!j - 1) in
let aj_2 = arcs.(!j - 2) in
let bj = arcs.(aj.mate) in
let bj_1 = arcs.(aj_1.mate) in
let bj_2 = arcs.(aj_2.mate) in
let l' = ref (Terminal a) in
let l'' = ref (Terminal aj) in
let l''' = ref (Terminal c) in
aj.vert <- q; aj.next <- b; aj.inst <- l'';
aj_1.vert <- r; aj_1.next <- c; aj_1.inst <- l''';
aj_2.vert <- s; aj_2.next <- a; aj_2.inst <- l';
bj.vert <- Point p; bj.next <- aj_2; bj.inst <- l';
bj_1.vert <- Point p; bj_1.next <- aj; bj_1.inst <- l'';
bj_2.vert <- Point p; bj_2.next <- aj_1; bj_2.inst <- l''';
a.next <- bj; a.inst <- l';
b.next <- bj_1; b.inst <- l'';
c.next <- bj_2; c.inst <- l''';
let r = finite r in
let s = finite s in
let r = match q with
| Point q ->
let n = ref (Branch (q, p, l', l'')) in
let n' = ref (Branch (s, p, l''', l')) in
l := Branch (r, p, n, n');
r
| Infinity ->
let n = ref (Branch (s, p, l''', l')) in
l := Branch (r, p, l'', n);
let rec loop m a d s t =
if t <> r && ccw p s t then begin
let n = ref (Terminal d) in
match !m with
| Branch (mu, mv, ml, is_l') ->
assert (is_l' == l');
m := Branch (mu, mv, ml, d.inst);
d.inst := Branch (t, p, n, l');
let m = d.inst in
flip a arcs.(a.mate) d t p n l';
let a = arcs.(a.mate).next in
let d = arcs.(a.mate).next in
let s = t in
let t = finite d.vert in
l' := Terminal a;
loop m a d s t
| Terminal _ ->
assert false
end else begin
let n = ref (Terminal d.next) in
d.inst := Branch (s, p, n, l');
d.inst <- n; d.next.inst <- n; d.next.next.inst <- n;
s
end
in
let d = arcs.(a.mate).next in
loop n a d s (finite d.vert)
in
let rec loop c =
let d = arcs.(c.mate) in
let e = d.next in
let t = finite d.vert in
let t' = finite c.vert in
let t'' = e.vert in
if t'' <> Infinity && in_circle (finite t'') t' t p then begin
let t'' = finite t'' in
let n = ref (Terminal e) in
let n' = ref (Terminal d) in
c.inst := Branch (t'', p, n, n');
d.inst := Branch (t'', p, n, n');
flip c d e t'' p n n';
loop e
end else if t' <> r then
loop arcs.(c.next.mate).next
else
()
in
loop c
done;
{ points = points; arcs = arcs; last_used_arc = !j }
let iter f t =
let points = t.points in
let n = Array.length t.arcs in
for i = 0 to t.last_used_arc do
match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with
| Point u, Point v -> f points.(u) points.(v)
| _ -> ()
done
let iter_triangles f t =
let n = Array.length t.arcs in
let seen_arc = Array.make n false in
let mate i = n - 1 - i in
let index a = mate a.mate in
for i = 0 to n-1 do
if not seen_arc.(i) then begin
let a1 = t.arcs.(i) in
let a2 = a1.next in
let a3 = a2.next in
seen_arc.(i) <- true;
seen_arc.(index a2) <- true;
seen_arc.(index a3) <- true;
match a1.vert, a2.vert, a3.vert with
| Point i1, Point i2, Point i3 ->
f t.points.(i1) t.points.(i2) t.points.(i3)
| _ ->
()
end
done
let fold f t a =
let points = t.points in
let n = Array.length t.arcs in
let rec loop i a =
if i <= t.last_used_arc then
match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with
| Point u, Point v -> loop (succ i) (f points.(u) points.(v) a)
| _ -> loop (succ i) a
else
a
in
loop 0 a
end
(** Points with floating point coordinates *)
module FloatPoints = struct
type point = float * float
let ( + ) = ( +. )
let ( - ) = ( -. )
let ( * ) = ( *. )
let det = function
| [| [| a00; a01 |];
[| a10; a11 |] |] ->
a00 * a11 - a01 * a10
| [| [| a00; a01; a02 |];
[| a10; a11; a12 |];
[| a20; a21; a22 |] |] ->
a00*a11*a22 - a00*a12*a21 - a10*a01*a22 +
a10*a02*a21 + a20*a01*a12 - a20*a02*a11
| [| [| a00; a01; a02; a03 |];
[| a10; a11; a12; a13 |];
[| a20; a21; a22; a23 |];
[| a30; a31; a32; a33 |] |] ->
a00*a11*a22*a33 - a00*a11*a23*a32 - a00*a21*a12*a33 +
a00*a21*a13*a32 + a00*a31*a12*a23 - a00*a31*a13*a22 -
a10*a01*a22*a33 + a10*a01*a23*a32 + a10*a21*a02*a33 -
a10*a21*a03*a32 - a10*a31*a02*a23 + a10*a31*a03*a22 +
a20*a01*a12*a33 - a20*a01*a13*a32 - a20*a11*a02*a33 +
a20*a11*a03*a32 + a20*a31*a02*a13 - a20*a31*a03*a12 -
a30*a01*a12*a23 + a30*a01*a13*a22 + a30*a11*a02*a23 -
a30*a11*a03*a22 - a30*a21*a02*a13 + a30*a21*a03*a12
| _ -> assert false
let ccw (xu,yu) (xv,yv) (xw,yw) =
det [| [| xu; yu; 1.0 |];
[| xv; yv; 1.0 |];
[| xw; yw; 1.0 |] |] > 0.0
let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) =
det [| [| xt; yt; (xt * xt + yt * yt); 1.0 |];
[| xu; yu; (xu * xu + yu * yu); 1.0 |];
[| xv; yv; (xv * xv + yv * yv); 1.0 |];
[| xw; yw; (xw * xw + yw * yw); 1.0 |]; |] > 0.0
end
module Float = Make(FloatPoints)
(** Points with integer coordinates.
We approximate using module [FloatPoints] but this could be made exact
following Knuth's code in Axioms and Hulls *)
module IntPoints = struct
type point = int * int
let ccw (xu,yu) (xv,yv) (xw,yw) =
FloatPoints.ccw
(float xu, float yu) (float xv, float yv) (float xw, float yw)
let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) =
FloatPoints.in_circle
(float xt, float yt)
(float xu, float yu) (float xv, float yv) (float xw, float yw)
end
module Int = Make(IntPoints)