Source file delaunay.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* $Id: delaunay.ml,v 1.12 2005-11-02 13:43:35 filliatr Exp $ *)

(** Code follows Don Knuth's algorithm
    from ``Axioms and hulls'' (LNCS 606, Springer-Verlag, 1992), pp. 73-77.

    Some code and comments are taken from the Stanford Graph Base,
    file [gb_plane].
*)

module type CCC = sig
  type point
  val ccw : point -> point -> point -> bool
  val in_circle : point -> point -> point -> point -> bool
end

module type Triangulation = sig
  module S : CCC
  type triangulation
  val triangulate : S.point array -> triangulation
  val iter : (S.point -> S.point -> unit) -> triangulation -> unit
  val fold : (S.point -> S.point -> 'a -> 'a) -> triangulation -> 'a -> 'a
  val iter_triangles :
    (S.point -> S.point -> S.point -> unit) -> triangulation -> unit
end

module Make (S : CCC) = struct

  module S = S

  type point = Point of int | Infinity

  (* Each edge of the current triangulation is represented by two arcs
     pointing in opposite directions; the two arcs are called mates. Each
     arc conceptually has a triangle on its left and a mate on its right. *)

  type arc = {
    mutable vert : point;
    (* v, if this arc goes from u to v *)
    mutable next : arc;
    (* the arc from v that shares a triangle with this one *)
    mutable inst : node ref;
    (* instruction to change when the triangle is modified *)
    mate : int
  }
  and node =
    | Branch of int * int * node ref * node ref
    | Terminal of arc

  type triangulation = {
    points : S.point array;
    arcs : arc array;
    last_used_arc : int
  }

  let rec dummy_arc =
    { vert = Infinity; next = dummy_arc;
      inst = ref (Terminal dummy_arc); mate = -1 }

  let make_arc n i =
    { vert = Infinity; next = dummy_arc;
      inst = ref (Terminal dummy_arc); mate = 6 * n - 7 - i }

  let finite = function Point p -> p | Infinity -> assert false

  (* [flip] will be used in both steps T4 and T5 *)
  let flip c d e t'' p n n' =
    let e' = e.next in
    let c' = c.next in
    let c'' = c'.next in
    e.next <- c;
    c.next <- c'';
    c''.next <- e;
    c''.inst <- n; c.inst <- n; e.inst <- n;
    c.vert <- Point p;
    d.next <- e';
    e'.next <- c';
    c'.next <- d;
    c'.inst <- n'; e'.inst <- n'; d.inst <- n';
    d.vert <- Point t''

  let triangulate points =
    let ccw p q r = S.ccw points.(p) points.(q) points.(r) in
    let in_circle p q r s =
      S.in_circle points.(p) points.(q) points.(r) points.(s)
    in
    let n = Array.length points in
    if n < 2 then invalid_arg "triangulate";
    let arcs = Array.init (6 * n - 6) (make_arc n) in
    let mate i = 6 * n - 7 - i in

    (*i DEBUG
      let rec dump d l =
      eprintf "%s" (String.make (2*d) ' ');
      match !l with
        | Terminal a ->
      eprintf "T %d\n" (mate a.mate)
        | Branch (u, v, l, r) ->
      eprintf "N %d %d\n" u v;
      dump (d+1) l;
      dump (d+1) r
      in
      i*)

    (* initialization:
       create a trivial triangulation for the first 2 vertices *)
    let u = 0 in
    let v = 1 in
    let a1 = arcs.(0) in
    let a2 = arcs.(1) in
    let a3 = arcs.(2) in
    let b1 = arcs.(mate 0) in
    let b2 = arcs.(mate 1) in
    let b3 = arcs.(mate 2) in
    let l1 = ref (Terminal a2) in
    let l2 = ref (Terminal b3) in
    a1.vert <- Point v;  a1.next <- a2; a1.inst <- l1;
    a2.vert <- Infinity; a2.next <- a3; a2.inst <- l1;
    a3.vert <- Point u;  a3.next <- a1; a3.inst <- l1;
    b1.vert <- Point u;  b1.next <- b3; b1.inst <- l2;
    b2.vert <- Point v;  b2.next <- b1; b2.inst <- l2;
    b3.vert <- Infinity; b3.next <- b2; b3.inst <- l2;
    let l0 = ref (Branch (u, v, l1, l2)) in
    let j = ref 2 in (* last used arc *)

    (* then for each new vertex [p] *)
    for p = 2 to n - 1 do
      (* Step T1 *)
      let rec step_T1 l p = match !l with
        | Terminal al ->
          l, al
        | Branch (pl, ql, al, bl) ->
          step_T1 (if ccw pl ql p then al else bl) p
      in
      let l, al = step_T1 l0 p in

      (* Step T2 *)
      let a = al in
      let b = a.next in
      let c = b.next in
      let q = a.vert in
      let r = b.vert in
      let s = c.vert in
      j := !j + 3;
      let aj = arcs.(!j) in
      let aj_1 = arcs.(!j - 1) in
      let aj_2 = arcs.(!j - 2) in
      let bj = arcs.(aj.mate) in
      let bj_1 = arcs.(aj_1.mate) in
      let bj_2 = arcs.(aj_2.mate) in
      let l' = ref (Terminal a) in
      let l'' = ref (Terminal aj) in
      let l''' = ref (Terminal c) in
      aj.vert   <- q;         aj.next <- b;      aj.inst <- l'';
      aj_1.vert <- r;       aj_1.next <- c;    aj_1.inst <- l''';
      aj_2.vert <- s;       aj_2.next <- a;    aj_2.inst <- l';
      bj.vert   <- Point p;   bj.next <- aj_2;   bj.inst <- l';
      bj_1.vert <- Point p; bj_1.next <- aj;   bj_1.inst <- l'';
      bj_2.vert <- Point p; bj_2.next <- aj_1; bj_2.inst <- l''';
      a.next <- bj;   a.inst <- l';
      b.next <- bj_1; b.inst <- l'';
      c.next <- bj_2; c.inst <- l''';
      let r = finite r in
      let s = finite s in

      (* steps T3 or T4 depending on [q] *)
      let r = match q with
        | Point q -> (* Step T3 *)
          let n = ref (Branch (q, p, l', l'')) in
          let n' = ref (Branch (s, p, l''', l')) in
          l := Branch (r, p, n, n');
          r
        | Infinity -> (* Step T4 *)
          let n = ref (Branch (s, p, l''', l')) in
          l := Branch (r, p, l'', n);
          let rec loop m a d s t =
            if t <> r && ccw p s t then begin
              let n = ref (Terminal d) in
              match !m with
              | Branch (mu, mv, ml, is_l') ->
                assert (is_l' == l');
                m := Branch (mu, mv, ml, d.inst);
                d.inst := Branch (t, p, n, l');
                let m = d.inst in
                flip a arcs.(a.mate) d t p n l';
                let a = arcs.(a.mate).next in
                let d = arcs.(a.mate).next in
                let s = t in
                let t = finite d.vert in
                l' := Terminal a;
                loop m a d s t
              | Terminal _ ->
                assert false
            end else begin
              (* at exit of while loop *)
              let n = ref (Terminal d.next) in
              d.inst := Branch (s, p, n, l');
              d.inst <- n; d.next.inst <- n; d.next.next.inst <- n;
              s
            end
          in
          let d = arcs.(a.mate).next in
          loop n a d s (finite d.vert)
      in

      (* Step T5 *)
      let rec loop c =
        let d = arcs.(c.mate) in
        let e = d.next in
        let t = finite d.vert in
        let t' = finite c.vert in
        let t'' = e.vert in
        if t'' <> Infinity && in_circle (finite t'') t' t p then begin
          let t'' = finite t'' in
          let n = ref (Terminal e) in
          let n' = ref (Terminal d) in
          c.inst := Branch (t'', p, n, n');
          d.inst := Branch (t'', p, n, n');
          flip c d e t'' p n n';
          loop e
        end else if t' <> r then
          loop arcs.(c.next.mate).next
        else
          () (* break *)
      in
      loop c

    done;
    { points = points; arcs = arcs; last_used_arc = !j }

  let iter f t =
    let points = t.points in
    let n = Array.length t.arcs in
    for i = 0 to t.last_used_arc do
      match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with
      | Point u, Point v -> f points.(u) points.(v)
      | _ -> ()
    done

  let iter_triangles f t =
    let n = Array.length t.arcs in
    let seen_arc = Array.make n false in
    let mate i = n - 1 - i in
    let index a = mate a.mate in
    for i = 0 to n-1 do
      if not seen_arc.(i) then begin
        let a1 = t.arcs.(i) in
        let a2 = a1.next in
        let a3 = a2.next in
        seen_arc.(i) <- true;
        seen_arc.(index a2) <- true;
        seen_arc.(index a3) <- true;
        match a1.vert, a2.vert, a3.vert with
        | Point i1, Point i2, Point i3 ->
          f t.points.(i1) t.points.(i2) t.points.(i3)
        | _ ->
          ()
      end
    done

  let fold f t a =
    let points = t.points in
    let n = Array.length t.arcs in
    let rec loop i a =
      if i <= t.last_used_arc then
        match t.arcs.(i).vert, t.arcs.(n - 1 - i).vert with
        | Point u, Point v -> loop (succ i) (f points.(u) points.(v) a)
        | _ -> loop (succ i) a
      else
        a
    in
    loop 0 a

end

(** Points with floating point coordinates *)

module FloatPoints = struct

  type point = float * float

  let ( + ) = ( +. )
  let ( - ) = ( -. )
  let ( * ) = ( *. )

  let det = function
    | [| [| a00; a01 |];
         [| a10; a11 |] |] ->
      a00 * a11 - a01 * a10
    | [| [| a00; a01; a02 |];
         [| a10; a11; a12 |];
         [| a20; a21; a22 |] |] ->
      a00*a11*a22 - a00*a12*a21 - a10*a01*a22 +
      a10*a02*a21 + a20*a01*a12 - a20*a02*a11
    | [| [| a00; a01; a02; a03 |];
         [| a10; a11; a12; a13 |];
         [| a20; a21; a22; a23 |];
         [| a30; a31; a32; a33 |] |] ->
      a00*a11*a22*a33 - a00*a11*a23*a32 - a00*a21*a12*a33 +
      a00*a21*a13*a32 + a00*a31*a12*a23 - a00*a31*a13*a22 -
      a10*a01*a22*a33 + a10*a01*a23*a32 + a10*a21*a02*a33 -
      a10*a21*a03*a32 - a10*a31*a02*a23 + a10*a31*a03*a22 +
      a20*a01*a12*a33 - a20*a01*a13*a32 - a20*a11*a02*a33 +
      a20*a11*a03*a32 + a20*a31*a02*a13 - a20*a31*a03*a12 -
      a30*a01*a12*a23 + a30*a01*a13*a22 + a30*a11*a02*a23 -
      a30*a11*a03*a22 - a30*a21*a02*a13 + a30*a21*a03*a12
    | _ -> assert false

  let ccw (xu,yu) (xv,yv) (xw,yw) =
    det [| [| xu; yu; 1.0 |];
           [| xv; yv; 1.0 |];
           [| xw; yw; 1.0 |] |] > 0.0

  (*i DEBUG
    let ccw (xu,yu) (xv,yv) (xw,yw) =
    eprintf "ccw((%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f)) -> "
      xu yu xv yv xw yw;
    let r = ccw (xu,yu) (xv,yv) (xw,yw) in
    eprintf "%b\n" r; flush stderr;
    r
    i*)

  let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) =
    det [| [| xt; yt; (xt * xt + yt * yt); 1.0 |];
           [| xu; yu; (xu * xu + yu * yu); 1.0 |];
           [| xv; yv; (xv * xv + yv * yv); 1.0 |];
           [| xw; yw; (xw * xw + yw * yw); 1.0 |]; |] > 0.0

  (*i DEBUG
    let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) =
    eprintf "in_circle((%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f),(%.0f,%.0f)) -> "
      xt yt xu yu xv yv xw yw;
    let r = in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) in
    eprintf "%b\n" r; flush stderr;
    r
    i*)

end

module Float = Make(FloatPoints)

(** Points with integer coordinates.
    We approximate using module [FloatPoints] but this could be made exact
    following Knuth's code in Axioms and Hulls *)

module IntPoints = struct

  type point = int * int

  let ccw (xu,yu) (xv,yv) (xw,yw) =
    FloatPoints.ccw
      (float xu, float yu) (float xv, float yv) (float xw, float yw)

  let in_circle (xt,yt) (xu,yu) (xv,yv) (xw,yw) =
    FloatPoints.in_circle
      (float xt, float yt)
      (float xu, float yu) (float xv, float yv) (float xw, float yw)

end

module Int = Make(IntPoints)