Source file domain.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*      KC Sivaramakrishnan, Indian Institute of Technology, Madras       *)
(*                 Stephen Dolan, University of Cambridge                 *)
(*                   Tom Kelly, OCaml Labs Consultancy                    *)
(*                                                                        *)
(*   Copyright 2019 Indian Institute of Technology, Madras                *)
(*   Copyright 2014 University of Cambridge                               *)
(*   Copyright 2021 OCaml Labs Consultancy Ltd                            *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

module Raw = struct
  (* Low-level primitives provided by the runtime *)
  type t = private int
  external spawn : (unit -> unit) -> Mutex.t -> t
    = "caml_domain_spawn"
  external self : unit -> t
    = "caml_ml_domain_id"
  external cpu_relax : unit -> unit
    = "caml_ml_domain_cpu_relax"
  external get_recommended_domain_count: unit -> int
    = "caml_recommended_domain_count" [@@noalloc]
end

let cpu_relax () = Raw.cpu_relax ()

type id = Raw.t

type 'a state =
| Running
| Finished of ('a, exn) result

type 'a t = {
  domain : Raw.t;
  term_mutex: Mutex.t;
  term_condition: Condition.t;
  term_state: 'a state ref (* protected by [term_mutex] *)
}

module DLS = struct

  type dls_state = Obj.t array

  let unique_value = Obj.repr (ref 0)

  external get_dls_state : unit -> dls_state = "%dls_get"

  external set_dls_state : dls_state -> unit =
    "caml_domain_dls_set" [@@noalloc]

  let create_dls () =
    let st = Array.make 8 unique_value in
    set_dls_state st

  let _ = create_dls ()

  type 'a key = int * (unit -> 'a)

  let key_counter = Atomic.make 0

  type key_initializer =
    KI: 'a key * ('a -> 'a) -> key_initializer

  let parent_keys = Atomic.make ([] : key_initializer list)

  let rec add_parent_key ki =
    let l = Atomic.get parent_keys in
    if not (Atomic.compare_and_set parent_keys l (ki :: l))
    then add_parent_key ki

  let new_key ?split_from_parent init_orphan =
    let idx = Atomic.fetch_and_add key_counter 1 in
    let k = (idx, init_orphan) in
    begin match split_from_parent with
    | None -> ()
    | Some split -> add_parent_key (KI(k, split))
    end;
    k

  (* If necessary, grow the current domain's local state array such that [idx]
   * is a valid index in the array. *)
  let maybe_grow idx =
    let st = get_dls_state () in
    let sz = Array.length st in
    if idx < sz then st
    else begin
      let rec compute_new_size s =
        if idx < s then s else compute_new_size (2 * s)
      in
      let new_sz = compute_new_size sz in
      let new_st = Array.make new_sz unique_value in
      Array.blit st 0 new_st 0 sz;
      set_dls_state new_st;
      new_st
    end

  let set (idx, _init) x =
    let st = maybe_grow idx in
    (* [Sys.opaque_identity] ensures that flambda does not look at the type of
     * [x], which may be a [float] and conclude that the [st] is a float array.
     * We do not want OCaml's float array optimisation kicking in here. *)
    st.(idx) <- Obj.repr (Sys.opaque_identity x)

  let get (idx, init) =
    let st = maybe_grow idx in
    let v = st.(idx) in
    if v == unique_value then
      let v' = Obj.repr (init ()) in
      st.(idx) <- (Sys.opaque_identity v');
      Obj.magic v'
    else Obj.magic v

  let get_initial_keys () : (int * Obj.t) list =
    List.map
      (fun (KI ((idx, _) as k, split)) ->
           (idx, Obj.repr (split (get k))))
      (Atomic.get parent_keys)

  let set_initial_keys (l: (int * Obj.t) list) =
    List.iter
      (fun (idx, v) ->
        let st = maybe_grow idx in st.(idx) <- v)
      l

end

(******** Identity **********)

let get_id { domain; _ } = domain

let self () = Raw.self ()

let is_main_domain () = (self () :> int) = 0

(******** Callbacks **********)

(* first spawn, domain startup and at exit functionality *)
let first_domain_spawned = Atomic.make false

let first_spawn_function = ref (fun () -> ())

let before_first_spawn f =
  if Atomic.get first_domain_spawned then
    raise (Invalid_argument "first domain already spawned")
  else begin
    let old_f = !first_spawn_function in
    let new_f () = old_f (); f () in
    first_spawn_function := new_f
  end

let do_before_first_spawn () =
  if not (Atomic.get first_domain_spawned) then begin
    Atomic.set first_domain_spawned true;
    !first_spawn_function();
    (* Release the old function *)
    first_spawn_function := (fun () -> ())
  end

let at_exit_key = DLS.new_key (fun () -> (fun () -> ()))

let at_exit f =
  let old_exit : unit -> unit = DLS.get at_exit_key in
  let new_exit () =
    (* The domain termination callbacks ([at_exit]) are run in
       last-in-first-out (LIFO) order in order to be symmetric with the domain
       creation callbacks ([at_each_spawn]) which run in first-in-fisrt-out
       (FIFO) order. *)
    f (); old_exit ()
  in
  DLS.set at_exit_key new_exit

let do_at_exit () =
  let f : unit -> unit = DLS.get at_exit_key in
  f ()

let _ = Stdlib.do_domain_local_at_exit := do_at_exit

(******* Creation and Termination ********)

let spawn f =
  do_before_first_spawn ();
  let pk = DLS.get_initial_keys () in

  (* The [term_mutex] and [term_condition] are used to
     synchronize with the joining domains *)
  let term_mutex = Mutex.create () in
  let term_condition = Condition.create () in
  let term_state = ref Running in

  let body () =
    let result =
      match
        DLS.create_dls ();
        DLS.set_initial_keys pk;
        let res = f () in
        res
      with
      | x -> Ok x
      | exception ex -> Error ex
    in

    let result' =
      (* Run the [at_exit] callbacks when the domain computation either
         terminates normally or exceptionally. *)
      match do_at_exit () with
      | () -> result
      | exception ex ->
          begin match result with
          | Ok _ ->
              (* If the domain computation terminated normally, but the
                 [at_exit] callbacks raised an exception, then return the
                 exception. *)
              Error ex
          | Error _ ->
              (* If both the domain computation and the [at_exit] callbacks
                 raised exceptions, then ignore the exception from the
                 [at_exit] callbacks and return the original exception. *)
              result
          end
    in

    (* Synchronize with joining domains *)
    Mutex.lock term_mutex;
    match !term_state with
    | Running ->
        term_state := Finished result';
        Condition.broadcast term_condition;
    | Finished _ ->
        failwith "internal error: Am I already finished?"
    (* [term_mutex] is unlocked in the runtime after the cleanup functions on
       the C side are finished. *)
  in
  { domain = Raw.spawn body term_mutex;
    term_mutex;
    term_condition;
    term_state }

let join { term_mutex; term_condition; term_state; _ } =
  Mutex.lock term_mutex;
  let rec loop () =
    match !term_state with
    | Running ->
        Condition.wait term_condition term_mutex;
        loop ()
    | Finished res ->
        Mutex.unlock term_mutex;
        res
  in
  match loop () with
  | Ok x -> x
  | Error ex -> raise ex

let recommended_domain_count = Raw.get_recommended_domain_count