1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
open! Stdlib
let debug = Debug.find "flow"
let times = Debug.find "times"
open Code
let add_var = Var.ISet.add
type def =
| Phi of Var.Set.t
| Expr of Code.expr
| Param
module Info = struct
type t =
{ info_defs : def array
; info_known_origins : Code.Var.Set.t Code.Var.Tbl.t
; info_maybe_unknown : bool Code.Var.Tbl.t
; info_possibly_mutable : Var.ISet.t
}
let def t x =
match t.info_defs.(Code.Var.idx x) with
| Phi _ | Param -> None
| Expr x -> Some x
let possibly_mutable t x = Code.Var.ISet.mem t.info_possibly_mutable x
let update_def { info_defs; _ } x exp =
let idx = Code.Var.idx x in
info_defs.(idx) <- Expr exp
end
let undefined = Phi Var.Set.empty
let is_undefined d =
match d with
| Phi s -> Var.Set.is_empty s
| _ -> false
let add_expr_def defs x e =
let idx = Var.idx x in
assert (is_undefined defs.(idx));
defs.(idx) <- Expr e
let add_assign_def vars defs x y =
add_var vars x;
let idx = Var.idx x in
match defs.(idx) with
| Expr _ | Param -> assert false
| Phi s -> defs.(idx) <- Phi (Var.Set.add y s)
let add_param_def vars defs x =
add_var vars x;
let idx = Var.idx x in
assert (is_undefined defs.(idx) || Poly.(defs.(idx) = Param));
defs.(idx) <- Param
let add_dep deps x y =
let idx = Var.idx y in
deps.(idx) <- Var.Set.add x deps.(idx)
let rec arg_deps vars deps defs params args =
match params, args with
| x :: params, y :: args ->
add_dep deps x y;
add_assign_def vars defs x y;
arg_deps vars deps defs params args
| [], [] -> ()
| _ -> assert false
let cont_deps blocks vars deps defs (pc, args) =
let block = Addr.Map.find pc blocks in
arg_deps vars deps defs block.params args
let expr_deps blocks vars deps defs x e =
match e with
| Constant _ | Apply _ | Prim _ | Special _ -> ()
| Closure (l, cont) ->
List.iter l ~f:(fun x -> add_param_def vars defs x);
cont_deps blocks vars deps defs cont
| Block (_, a, _, _) -> Array.iter a ~f:(fun y -> add_dep deps x y)
| Field (y, _, _) -> add_dep deps x y
let program_deps { blocks; _ } =
let nv = Var.count () in
let vars = Var.ISet.empty () in
let deps = Array.make nv Var.Set.empty in
let defs = Array.make nv undefined in
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) ->
add_var vars x;
add_expr_def defs x e;
expr_deps blocks vars deps defs x e
| Assign (x, y) ->
add_dep deps x y;
add_assign_def vars defs x y
| Event _ | Set_field _ | Array_set _ | Offset_ref _ -> ());
match block.branch with
| Return _ | Raise _ | Stop -> ()
| Branch cont | Poptrap cont -> cont_deps blocks vars deps defs cont
| Cond (_, cont1, cont2) ->
cont_deps blocks vars deps defs cont1;
cont_deps blocks vars deps defs cont2
| Switch (_, a1) ->
Array.iter a1 ~f:(fun cont -> cont_deps blocks vars deps defs cont)
| Pushtrap (cont, x, cont_h) ->
add_param_def vars defs x;
cont_deps blocks vars deps defs cont_h;
cont_deps blocks vars deps defs cont)
blocks;
vars, deps, defs
let var_set_lift f s = Var.Set.fold (fun y s -> Var.Set.union (f y) s) s Var.Set.empty
let propagate1 deps defs st x =
match defs.(Var.idx x) with
| Param -> Var.Set.singleton x
| Phi s -> var_set_lift (fun y -> Var.Tbl.get st y) s
| Expr e -> (
match e with
| Constant _ | Apply _ | Prim _ | Special _ | Closure _ | Block _ ->
Var.Set.singleton x
| Field (y, n, _) ->
var_set_lift
(fun z ->
match defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) when n < Array.length a ->
let t = a.(n) in
add_dep deps x t;
Var.Tbl.get st t
| Phi _ | Param | Expr _ -> Var.Set.empty)
(Var.Tbl.get st y))
module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl)
module Domain1 = struct
type t = Var.Set.t
let equal = Var.Set.equal
let bot = Var.Set.empty
end
module Solver1 = G.Solver (Domain1)
let solver1 vars deps defs =
let g =
{ G.domain = vars; G.iter_children = (fun f x -> Var.Set.iter f deps.(Var.idx x)) }
in
Solver1.f () g (propagate1 deps defs)
type mutability_state =
{ defs : def array
; known_origins : Code.Var.Set.t Code.Var.Tbl.t
; may_escape : Code.Var.ISet.t
; possibly_mutable : Code.Var.ISet.t
}
let rec block_escape st x =
Var.Set.iter
(fun y ->
if not (Code.Var.ISet.mem st.may_escape y)
then (
Code.Var.ISet.add st.may_escape y;
match st.defs.(Var.idx y) with
| Expr (Block (_, l, _, mut)) ->
(match mut with
| Immutable -> ()
| Maybe_mutable -> Code.Var.ISet.add st.possibly_mutable y);
Array.iter l ~f:(fun z -> block_escape st z)
| Expr
(Prim (Extern ("caml_make_array" | "caml_array_of_uniform_array"), [ Pv y ]))
-> block_escape st y
| _ -> Code.Var.ISet.add st.possibly_mutable y))
(Var.Tbl.get st.known_origins x)
let expr_escape st _x e =
match e with
| Special _ | Constant _ | Closure _ | Block _ | Field _ -> ()
| Apply { args; _ } -> List.iter args ~f:(fun x -> block_escape st x)
| Prim (Array_get, [ Pv x; _ ]) -> block_escape st x
| Prim ((Vectlength | Array_get | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) -> ()
| Prim (Extern ("caml_make_array" | "caml_array_of_uniform_array"), [ Pv _ ]) -> ()
| Prim (Extern name, l) ->
let ka =
match Primitive.kind_args name with
| Some l -> l
| None -> (
match Primitive.kind name with
| `Mutable | `Mutator -> []
| `Pure -> List.map l ~f:(fun _ -> `Const))
in
let rec loop args ka =
match args, ka with
| [], _ -> ()
| Pc _ :: ax, [] -> loop ax []
| Pv a :: ax, [] ->
block_escape st a;
loop ax []
| a :: ax, k :: kx ->
(match a, k with
| _, `Const | Pc _, _ -> ()
| Pv v, `Shallow_const -> (
match st.defs.(Var.idx v) with
| Expr (Constant (Tuple _)) -> ()
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x -> block_escape st x)
| Expr
(Prim
( Extern ("caml_make_array" | "caml_array_of_uniform_array")
, [ Pv y ] )) -> (
match st.defs.(Var.idx y) with
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x -> block_escape st x)
| _ -> assert false)
| _ -> block_escape st v)
| Pv v, `Object_literal -> (
match st.defs.(Var.idx v) with
| Expr (Constant (Tuple _)) -> ()
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x ->
match st.defs.(Var.idx x) with
| Expr (Block (_, [| _k; v |], _, _)) -> block_escape st v
| Expr (Constant _) -> ()
| _ -> block_escape st x)
| _ -> block_escape st v)
| Pv v, `Mutable -> block_escape st v);
loop ax kx
in
loop l ka
let program_escape defs known_origins { blocks; _ } =
let may_escape = Var.ISet.empty () in
let possibly_mutable = Var.ISet.empty () in
let st = { defs; known_origins; may_escape; possibly_mutable } in
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) -> expr_escape st x e
| Event _ | Assign _ -> ()
| Set_field (x, _, _, y) | Array_set (x, _, y) ->
Var.Set.iter
(fun y -> Var.ISet.add possibly_mutable y)
(Var.Tbl.get known_origins x);
block_escape st y
| Offset_ref (x, _) ->
Var.Set.iter
(fun y -> Var.ISet.add possibly_mutable y)
(Var.Tbl.get known_origins x));
match block.branch with
| Return x | Raise (x, _) -> block_escape st x
| Stop | Branch _ | Cond _ | Switch _ | Pushtrap _ | Poptrap _ -> ())
blocks;
possibly_mutable
let propagate2 ?(skip_param = false) defs known_origins possibly_mutable st x =
match defs.(Var.idx x) with
| Param -> skip_param
| Phi s -> Var.Set.exists (fun y -> Var.Tbl.get st y) s
| Expr e -> (
match e with
| Constant _ | Closure _ | Apply _ | Prim _ | Block _ | Special _ -> false
| Field (y, n, _) ->
Var.Tbl.get st y
|| Var.Set.exists
(fun z ->
match defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) ->
n >= Array.length a
|| Var.ISet.mem possibly_mutable z
|| Var.Tbl.get st a.(n)
| Phi _ | Param | Expr _ -> true)
(Var.Tbl.get known_origins y))
module Domain2 = struct
type t = bool
let equal = Bool.equal
let bot = false
end
module Solver2 = G.Solver (Domain2)
let solver2 ?skip_param vars deps defs known_origins possibly_mutable =
let g =
{ G.domain = vars; G.iter_children = (fun f x -> Var.Set.iter f deps.(Var.idx x)) }
in
Solver2.f () g (propagate2 ?skip_param defs known_origins possibly_mutable)
let get_approx
{ Info.info_defs = _; info_known_origins; info_maybe_unknown; _ }
f
top
join
x =
let s = Var.Tbl.get info_known_origins x in
if Var.Tbl.get info_maybe_unknown x
then top
else
match Var.Set.cardinal s with
| 0 -> top
| 1 -> f (Var.Set.choose s)
| _ -> Var.Set.fold (fun x u -> join (f x) u) s (f (Var.Set.choose s))
let the_def_of info x =
match x with
| Pv x ->
get_approx
info
(fun x ->
match info.info_defs.(Var.idx x) with
| Expr (Constant (Float _ | Int _ | NativeString _) as e) -> Some e
| Expr (Constant (String _) as e) when Config.Flag.safe_string () -> Some e
| Expr e -> if Var.ISet.mem info.info_possibly_mutable x then None else Some e
| _ -> None)
None
(fun _ _ -> None)
x
| Pc c -> Some (Constant c)
let constant_identical ~(target : [ `JavaScript | `Wasm ]) a b =
match a, b, target with
| Int i, Int j, _ -> Targetint.equal i j
| Float a, Float b, `JavaScript -> Float.bitwise_equal a b
| Float _, Float _, `Wasm -> false
| NativeString a, NativeString b, `JavaScript -> Native_string.equal a b
| NativeString _, NativeString _, `Wasm ->
false
| String a, String b, `JavaScript -> Config.Flag.use_js_string () && String.equal a b
| String _, String _, `Wasm ->
false
| Int32 _, Int32 _, `Wasm ->
false
| Int32 _, Int32 _, `JavaScript -> assert false
| NativeInt _, NativeInt _, `Wasm ->
false
| NativeInt _, NativeInt _, `JavaScript -> assert false
| Int64 _, Int64 _, _ -> false
| Tuple _, Tuple _, _ -> false
| Float_array _, Float_array _, _ -> false
| (Int _ | Float _ | Int64 _ | Int32 _ | NativeInt _), _, _ -> false
| (String _ | NativeString _), _, _ -> false
| (Float_array _ | Tuple _), _, _ -> false
let the_const_of ~target info x =
match x with
| Pv x ->
get_approx
info
(fun x ->
match info.info_defs.(Var.idx x) with
| Expr (Constant ((Float _ | Int _ | NativeString _) as c)) -> Some c
| Expr (Constant (String _ as c)) when Config.Flag.safe_string () -> Some c
| Expr (Constant c) ->
if Var.ISet.mem info.info_possibly_mutable x then None else Some c
| _ -> None)
None
(fun u v ->
match u, v with
| Some i, Some j when constant_identical ~target i j -> u
| _ -> None)
x
| Pc c -> Some c
let the_int ~target info x =
match the_const_of ~target info x with
| Some (Int i) -> Some i
| _ -> None
let the_string_of ~target info x =
match the_const_of info ~target x with
| Some (String i) -> Some i
| _ -> None
let the_native_string_of ~target info x =
match the_const_of ~target info x with
| Some (NativeString i) -> Some i
| Some (String i) ->
Some (Native_string.of_bytestring i)
| _ -> None
let the_block_contents_of info x =
match the_def_of info x with
| Some (Block (_, a, _, _)) -> Some a
| Some (Prim (Extern ("caml_make_array" | "caml_array_of_uniform_array"), [ x ])) -> (
match the_def_of info x with
| Some (Block (_, a, _, _)) -> Some a
| _ -> None)
| _ -> None
let direct_approx (info : Info.t) x =
match info.info_defs.(Var.idx x) with
| Expr (Field (y, n, _)) ->
get_approx
info
(fun z ->
if Var.ISet.mem info.info_possibly_mutable z
then None
else
match info.info_defs.(Var.idx z) with
| Expr (Block (_, a, _, _)) when n < Array.length a -> Some a.(n)
| _ -> None)
None
(fun u v ->
match u, v with
| Some n, Some m when Var.compare n m = 0 -> u
| _ -> None)
y
| _ -> None
let build_subst (info : Info.t) vars =
let nv = Var.count () in
let subst = Array.init nv ~f:(fun i -> Var.of_idx i) in
Var.ISet.iter
(fun x ->
let x_idx = Var.idx x in
let u = Var.Tbl.get info.info_maybe_unknown x in
(if not u
then
let s = Var.Tbl.get info.info_known_origins x in
if Var.Set.cardinal s = 1 then subst.(x_idx) <- Var.Set.choose s);
(if Var.equal subst.(x_idx) x
then
match direct_approx info x with
| None -> ()
| Some y -> subst.(x_idx) <- y);
if Var.equal subst.(x_idx) x then () else Var.propagate_name x subst.(x_idx))
vars;
subst
let f ?skip_param p =
Code.invariant p;
let t = Timer.make () in
let t1 = Timer.make () in
let vars, deps, defs = program_deps p in
if times () then Format.eprintf " flow analysis 1: %a@." Timer.print t1;
let t2 = Timer.make () in
let known_origins = solver1 vars deps defs in
if times () then Format.eprintf " flow analysis 2: %a@." Timer.print t2;
let t3 = Timer.make () in
let possibly_mutable = program_escape defs known_origins p in
if times () then Format.eprintf " flow analysis 3: %a@." Timer.print t3;
let t4 = Timer.make () in
let maybe_unknown = solver2 ?skip_param vars deps defs known_origins possibly_mutable in
if times () then Format.eprintf " flow analysis 4: %a@." Timer.print t4;
if debug ()
then
Var.ISet.iter
(fun x ->
let s = Var.Tbl.get known_origins x in
if not (Var.Set.is_empty s)
then
Format.eprintf
"%a: {%a} / %s@."
Var.print
x
Code.Print.var_list
(Var.Set.elements s)
(if Var.Tbl.get maybe_unknown x then "any" else "known"))
vars;
let t5 = Timer.make () in
let info =
{ Info.info_defs = defs
; info_known_origins = known_origins
; info_maybe_unknown = maybe_unknown
; info_possibly_mutable = possibly_mutable
}
in
let s = build_subst info vars in
let p = Subst.Excluding_Binders.program (Subst.from_array s) p in
if times () then Format.eprintf " flow analysis 5: %a@." Timer.print t5;
if times () then Format.eprintf " flow analysis: %a@." Timer.print t;
Code.invariant p;
p, info