Source file short_paths.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
open Short_paths_graph
module Desc = Desc
module Rev_deps : sig
type t
val create : unit -> t
val extend_up_to : t -> Dependency.t -> unit
val get : t -> Dependency.t -> Dependency.Set.t
val add : t -> source:Dependency.t -> target:Dependency.t -> unit
val add_alias : t -> source:Dependency.t -> target:Dependency.t -> unit
val before : t -> Origin.t -> Origin.t -> bool
end = struct
module Stamp = Natural.Make()
type item =
{ mutable set : Dependency.Set.t;
mutable edges : Dependency.t list;
mutable alias_edges : Dependency.t list;
mutable last : Stamp.t; }
type t =
{ mutable stamp : Stamp.t;
mutable items : item Dependency.Array.t; }
let create () =
{ stamp = Stamp.one;
items = Dependency.Array.empty; }
let extend_up_to t next =
match Dependency.pred next with
| None -> ()
| Some curr ->
if not (Dependency.Array.contains t.items curr) then begin
let items =
Dependency.Array.extend t.items curr
(fun _ -> { set = Dependency.Set.empty;
edges = [];
alias_edges = [];
last = Stamp.zero; })
in
t.items <- items
end
let add t ~source ~target =
let item = Dependency.Array.get t.items source in
item.edges <- target :: item.edges;
t.stamp <- Stamp.succ t.stamp
let add_alias t ~source ~target =
let item = Dependency.Array.get t.items source in
item.alias_edges <- target :: item.alias_edges;
t.stamp <- Stamp.succ t.stamp
let update t dep item =
if Stamp.less_than item.last t.stamp then begin
let rec add_edges t item acc =
let rec loop t acc added = function
| [] ->
List.fold_left
(fun acc dep ->
let item = Dependency.Array.get t.items dep in
add_alias_edges t item acc)
acc added
| dep :: rest ->
if Dependency.Set.mem dep acc then loop t acc added rest
else begin
let acc = Dependency.Set.add dep acc in
let added = dep :: added in
loop t acc added rest
end
in
loop t acc [] item.edges
and add_alias_edges t item acc =
List.fold_left
(fun acc dep ->
if Dependency.Set.mem dep acc then acc
else begin
let acc = Dependency.Set.add dep acc in
let item = Dependency.Array.get t.items dep in
let acc = add_edges t item acc in
add_alias_edges t item acc
end)
acc item.alias_edges
in
let set = Dependency.Set.singleton dep in
let set = add_edges t item set in
let set = add_alias_edges t item set in
item.set <- set;
item.last <- t.stamp
end
let get t dep =
let item = Dependency.Array.get t.items dep in
update t dep item;
item.set
let before t origin1 origin2 =
let open Origin in
match origin1, origin2 with
| Environment age1, Environment age2 -> Age.less_than age1 age2
| Environment _, Dependency _ -> false
| Environment _, Dependencies _ -> false
| Dependency _, Environment _ -> true
| Dependency dep1, Dependency dep2 ->
let rev_dep = get t dep1 in
Dependency.Set.mem dep2 rev_dep
| Dependency dep1, Dependencies deps2 ->
let rev_dep = get t dep1 in
List.exists
(fun dep2 -> Dependency.Set.mem dep2 rev_dep)
deps2
| Dependencies _, Environment _ -> true
| Dependencies deps1, Dependency dep2 ->
List.for_all
(fun dep1 -> Dependency.Set.mem dep2 (get t dep1))
deps1
| Dependencies deps1, Dependencies deps2 ->
let rev_dep =
match deps1 with
| [] -> failwith "Rev_deps.before: invalid origin"
| dep1 :: deps1 ->
List.fold_left
(fun acc dep1 -> Dependency.Set.inter acc (get t dep1))
(get t dep1) deps1
in
List.exists
(fun dep2 -> Dependency.Set.mem dep2 rev_dep)
deps2
end
module Origin_range_tbl = struct
type 'a t =
{ mutable envs : 'a list Age.Map.t;
mutable dep_keys : Dependency.Set.t;
deps : 'a list Dependency.Tbl.t; }
let create () =
{ envs = Age.Map.empty;
dep_keys = Dependency.Set.empty;
deps = Dependency.Tbl.create 0; }
let add_dependency dep data t =
t.dep_keys <- Dependency.Set.add dep t.dep_keys;
let prev =
match Dependency.Tbl.find t.deps dep with
| exception Not_found -> []
| prev -> prev
in
Dependency.Tbl.replace t.deps dep (data :: prev)
let add_age age data t =
let prev =
match Age.Map.find age t.envs with
| exception Not_found -> []
| prev -> prev
in
t.envs <- Age.Map.add age (data :: prev) t.envs
let add rev_deps origin data t =
match origin with
| Origin.Dependency dep -> add_dependency dep data t
| Origin.Environment age -> add_age age data t
| Origin.Dependencies deps -> begin
let rev_dep_opt =
List.fold_left
(fun acc dep ->
let rev_dep = Rev_deps.get rev_deps dep in
match acc with
| None -> Some rev_dep
| Some acc -> Some (Dependency.Set.inter acc rev_dep))
None deps
in
let rev_dep =
match rev_dep_opt with
| None -> failwith "Origin_range_tbl.add: invalid origin"
| Some rev_dep -> rev_dep
in
match
List.find
(fun dep -> Dependency.Set.mem dep rev_dep)
deps
with
| dep -> add_dependency dep data t
| exception Not_found ->
match Dependency.Set.choose rev_dep with
| dep -> add_dependency dep data t
| exception Not_found -> add_age Age.zero data t
end
let pop_dependency rev_dep t =
let matching = Dependency.Set.inter rev_dep t.dep_keys in
t.dep_keys <- Dependency.Set.diff t.dep_keys matching;
let items =
Dependency.Set.fold
(fun dep acc ->
let data = Dependency.Tbl.find t.deps dep in
Dependency.Tbl.remove t.deps dep;
List.rev_append data acc)
matching
[]
in
let items =
Age.Map.fold
(fun _ data acc -> List.rev_append data acc)
t.envs items
in
t.envs <- Age.Map.empty;
items
let pop_age age t =
let envs, first, matching = Age.Map.split age t.envs in
let items =
match first with
| None -> []
| Some first -> first
in
let items =
Age.Map.fold
(fun _ data acc -> List.rev_append data acc)
matching items
in
t.envs <- envs;
items
let pop rev_deps origin t =
match origin with
| Origin.Dependency dep ->
let rev_dep = Rev_deps.get rev_deps dep in
pop_dependency rev_dep t
| Origin.Dependencies deps ->
let rev_dep_opt =
List.fold_left
(fun acc dep ->
let rev_dep = Rev_deps.get rev_deps dep in
match acc with
| None -> Some rev_dep
| Some acc -> Some (Dependency.Set.inter acc rev_dep))
None deps
in
let rev_dep =
match rev_dep_opt with
| None -> failwith "Origin_range_tbl.pop: invalid origin"
| Some rev_dep -> rev_dep
in
pop_dependency rev_dep t
| Origin.Environment age ->
pop_age age t
let is_origin_empty rev_deps origin t =
match origin with
| Origin.Dependency dep ->
if not (Age.Map.is_empty t.envs) then false
else begin
let rev_dep = Rev_deps.get rev_deps dep in
let matching = Dependency.Set.inter rev_dep t.dep_keys in
Dependency.Set.is_empty matching
end
| Origin.Dependencies deps ->
if not (Age.Map.is_empty t.envs) then false
else begin
let rev_dep_opt =
List.fold_left
(fun acc dep ->
let rev_dep = Rev_deps.get rev_deps dep in
match acc with
| None -> Some rev_dep
| Some acc -> Some (Dependency.Set.inter acc rev_dep))
None deps
in
let rev_dep =
match rev_dep_opt with
| None ->
failwith "Origin_range_tbl.is_origin_empty: invalid origin"
| Some rev_dep -> rev_dep
in
let matching = Dependency.Set.inter rev_dep t.dep_keys in
Dependency.Set.is_empty matching
end
| Origin.Environment age ->
match Age.Map.max_binding t.envs with
| exception Not_found -> true
| (max, _) -> Age.less_than max age
let is_completely_empty t =
Age.Map.is_empty t.envs
&& Dependency.Set.is_empty t.dep_keys
end
module Height = Natural.Make_no_zero()
module Todo = struct
module Item = struct
type t =
| Base of Diff.Item.t
| Children of
{ md : Module.t;
path : Path.t;
seen : Path_set.t; }
| Update of
{ id : Ident.t;
origin : Origin.t; }
| Forward of
{ id : Ident.t;
decl : Origin.t;
origin : Origin.t; }
end
type t =
{ mutable table : Item.t Origin_range_tbl.t Height.Array.t }
let create graph rev_deps diff =
let tbl = Origin_range_tbl.create () in
List.iter
(fun item ->
let origin = Diff.Item.origin graph item in
match Diff.Item.previous graph item with
| None ->
Origin_range_tbl.add rev_deps origin (Item.Base item) tbl;
| Some decl ->
let id = Diff.Item.id graph item in
let item = Item.Forward { id; decl; origin } in
Origin_range_tbl.add rev_deps origin item tbl)
diff;
let table = Height.Array.singleton tbl in
{ table }
let get_table t height =
if not (Height.Array.contains t.table height) then begin
t.table <- Height.Array.extend t.table height
(fun _ -> Origin_range_tbl.create ());
end;
Height.Array.get t.table height
let get_table_opt t height =
if Height.Array.contains t.table height then
Some (Height.Array.get t.table height)
else None
let retract_empty t =
let rec loop height =
match Height.pred height with
| None ->
t.table <- Height.Array.empty
| Some prev ->
let tbl = Height.Array.get t.table prev in
if Origin_range_tbl.is_completely_empty tbl then loop prev
else begin
t.table <- Height.Array.retract t.table height
end
in
match Height.Array.last t.table with
| None -> ()
| Some last ->
let tbl = Height.Array.get t.table last in
if Origin_range_tbl.is_completely_empty tbl then loop last
else ()
let merge graph rev_deps t diff =
let tbl = get_table t Height.one in
List.iter
(fun item ->
match Diff.Item.previous graph item with
| None -> ()
| Some origin ->
let id = Diff.Item.id graph item in
let item = Item.Update { id; origin } in
Origin_range_tbl.add rev_deps origin item tbl)
diff
let mutate graph rev_deps t diff =
let tbl = get_table t Height.one in
List.iter
(fun item ->
match Diff.Item.previous graph item with
| None ->
let origin = Diff.Item.origin graph item in
Origin_range_tbl.add rev_deps origin (Item.Base item) tbl;
| Some origin ->
let id = Diff.Item.id graph item in
let item = Item.Update { id; origin } in
Origin_range_tbl.add rev_deps origin item tbl)
diff
let add_children graph rev_deps t height md path seen =
let height = Height.succ height in
let tbl = get_table t height in
let origin = Module.origin graph md in
Origin_range_tbl.add rev_deps origin (Item.Children{md; path; seen}) tbl
let add_next_update rev_deps t height origin id =
let height = Height.succ height in
let tbl = get_table t height in
let item = Item.Update { id; origin } in
Origin_range_tbl.add rev_deps origin item tbl
let add_next_forward rev_deps t height origin id decl =
let height = Height.succ height in
let tbl = get_table t height in
let item = Item.Forward { id; decl; origin } in
Origin_range_tbl.add rev_deps origin item tbl
let rec is_empty_from rev_deps t height origin =
match get_table_opt t height with
| None -> true
| Some tbl ->
Origin_range_tbl.is_origin_empty rev_deps origin tbl
&& is_empty_from rev_deps t (Height.succ height) origin
let pop rev_deps t height origin =
match get_table_opt t height with
| None ->
retract_empty t;
None
| Some tbl ->
match Origin_range_tbl.pop rev_deps origin tbl with
| [] ->
let empty_from =
is_empty_from rev_deps t (Height.succ height) origin
in
if not empty_from then Some []
else begin
retract_empty t;
None
end
| _ :: _ as todo -> Some todo
end
module Forward_path_map : sig
type 'a t
val empty : 'a t
val add : 'a t -> Sort.t -> Path.t -> 'a -> 'a t
val find : 'a t -> Path.t -> 'a list
val rebase : 'a t -> 'a t -> 'a t
val iter_forwards : (Path.t -> 'a -> unit) -> 'a t -> Ident.t -> unit
val iter_updates : (Path.t -> 'a -> unit) -> 'a t -> Ident.t -> unit
end = struct
type 'a t =
{ new_paths : 'a list Path_map.t;
old_paths : 'a list Path_map.t;
updates : Path_set.t Ident_map.t;
forwards : Path_set.t Ident_map.t; }
let empty =
{ new_paths = Path_map.empty;
old_paths = Path_map.empty;
forwards = Ident_map.empty;
updates = Ident_map.empty; }
let add t sort path data =
let new_paths = t.new_paths in
let prev =
match Path_map.find path new_paths with
| prev -> prev
| exception Not_found -> []
in
let new_paths = Path_map.add path (data :: prev) new_paths in
let updates = t.updates in
let updates =
match sort with
| Sort.Defined -> updates
| Sort.Declared ids ->
Ident_set.fold
(fun id acc ->
let prev =
match Ident_map.find id updates with
| prev -> prev
| exception Not_found -> Path_set.empty
in
Ident_map.add id (Path_set.add path prev) acc)
ids updates
in
{ t with new_paths; updates }
let find t path =
match Path_map.find path t.new_paths with
| exception Not_found -> Path_map.find path t.old_paths
| new_paths ->
match Path_map.find path t.old_paths with
| exception Not_found -> new_paths
| old_paths -> new_paths @ old_paths
let rebase t base =
let old_paths =
Path_map.union
(fun _ paths1 paths2 -> Some (paths1 @ paths2))
base.new_paths base.old_paths
in
let forwards =
Ident_map.union
(fun _ pset1 pset2 -> Some (Path_set.union pset1 pset2))
base.updates base.forwards
in
{ t with old_paths; forwards }
let iter_updates f t id =
match Ident_map.find id t.updates with
| exception Not_found -> ()
| pset ->
Path_set.iter
(fun path ->
match Path_map.find path t.new_paths with
| exception Not_found -> ()
| paths -> List.iter (f path) paths)
pset
let iter_forwards f t id =
match Ident_map.find id t.forwards with
| exception Not_found -> ()
| pset ->
Path_set.iter
(fun path ->
match Path_map.find path t.old_paths with
| exception Not_found -> ()
| paths -> List.iter (f path) paths)
pset
end
module Origin_tbl = Hashtbl.Make(Origin)
module History : sig
module Stamp : Natural.S
module Revision : sig
type t
val stamp : t -> Stamp.t
val diff : t -> Diff.t
val rev_deps : t -> Rev_deps.t
val next : t -> t option
end
type t
val init : Rev_deps.t -> Diff.t -> t
val head : t -> Revision.t
val commit : t -> Rev_deps.t -> Diff.t -> unit
end = struct
module Stamp = Natural.Make()
module Revision = struct
type t =
{ stamp : Stamp.t;
diff : Diff.t;
rev_deps : Rev_deps.t;
mutable next : t option; }
let stamp t = t.stamp
let diff t = t.diff
let rev_deps t = t.rev_deps
let next t = t.next
end
type t =
{ mutable head : Revision.t; }
let init rev_deps diff =
let stamp = Stamp.zero in
let next = None in
let head = { Revision.stamp; diff; rev_deps; next } in
{ head }
let head t = t.head
let commit t rev_deps diff =
let head = t.head in
let stamp = Stamp.succ head.Revision.stamp in
let next = None in
let rev = { Revision.stamp; diff; rev_deps; next } in
head.Revision.next <- Some rev;
t.head <- rev
end
type type_resolution =
| Nth of int
| Subst of int list
| Id
type type_result =
| Nth of int
| Path of int list option * Path.t
type class_type_result = int list option * Path.t
module Shortest = struct
module Section = struct
type t =
{ mutable types : Path.t Forward_path_map.t;
mutable class_types : Path.t Forward_path_map.t;
mutable module_types : Path.t Forward_path_map.t;
mutable modules : (Path.t * Path_set.t) Forward_path_map.t; }
let create () =
let types = Forward_path_map.empty in
let class_types = Forward_path_map.empty in
let module_types = Forward_path_map.empty in
let modules = Forward_path_map.empty in
{ types; class_types; module_types; modules }
let add_type graph t typ path =
let canonical = Type.path graph typ in
let sort = Type.sort graph typ in
t.types <- Forward_path_map.add t.types sort canonical path
let add_class_type graph t mty path =
let canonical = Class_type.path graph mty in
let sort = Class_type.sort graph mty in
t.class_types <- Forward_path_map.add t.class_types sort canonical path
let add_module_type graph t mty path =
let canonical = Module_type.path graph mty in
let sort = Module_type.sort graph mty in
t.module_types <- Forward_path_map.add t.module_types sort canonical path
let add_module graph t md path =
let canonical = Module.path graph md in
let sort = Module.sort graph md in
t.modules <- Forward_path_map.add t.modules sort canonical path
let rebase t parent =
t.types <- Forward_path_map.rebase t.types parent.types;
t.class_types <- Forward_path_map.rebase t.class_types parent.class_types;
t.module_types <- Forward_path_map.rebase t.module_types parent.module_types;
t.modules <- Forward_path_map.rebase t.modules parent.modules
let iter_updates ~type_ ~class_type ~module_type ~module_ t id =
Forward_path_map.iter_updates type_ t.types id;
Forward_path_map.iter_updates class_type t.class_types id;
Forward_path_map.iter_updates module_type t.module_types id;
Forward_path_map.iter_updates module_ t.modules id
let iter_forwards ~type_ ~class_type ~module_type ~module_ t id =
Forward_path_map.iter_forwards type_ t.types id;
Forward_path_map.iter_forwards class_type t.class_types id;
Forward_path_map.iter_forwards module_type t.module_types id;
Forward_path_map.iter_forwards module_ t.modules id
let find_type graph t typ =
let canonical = Type.path graph typ in
Forward_path_map.find t.types canonical
let find_class_type graph t mty =
let canonical = Class_type.path graph mty in
Forward_path_map.find t.class_types canonical
let find_module_type graph t mty =
let canonical = Module_type.path graph mty in
Forward_path_map.find t.module_types canonical
let find_module graph t md =
let canonical = Module.path graph md in
Forward_path_map.find t.modules canonical
end
module Sections = struct
type range =
| Until of Height.t
| All
type versioning =
| Unversioned
| Initialisation of History.Stamp.t
| Completion of History.Stamp.t
type t =
{ mutable sections : Section.t Height.Array.t;
mutable initialised : range;
mutable completed : range;
mutable versioning : versioning; }
let create age origin =
let sections = Height.Array.empty in
let completed = Until Height.one in
let initialised, versioning =
if Age.equal age Age.zero then begin
All, Completion History.Stamp.zero
end else begin
match origin with
| Origin.Environment age' ->
let initialised =
if Age.less_than_or_equal age age' then All
else Until Height.one
in
initialised, Unversioned
| Origin.Dependency _ | Origin.Dependencies _ ->
Until Height.one, Initialisation History.Stamp.zero
end
in
{ sections; initialised; completed; versioning; }
let update t stamp =
match t.versioning with
| Unversioned -> ()
| Initialisation initialised ->
if History.Stamp.less_than initialised stamp then begin
t.initialised <- Until Height.one;
t.versioning <- Initialisation stamp
end
| Completion completed ->
if History.Stamp.less_than completed stamp then begin
t.completed <- Until Height.one;
t.versioning <- Completion stamp
end
let expand t height =
let sections = t.sections in
if not (Height.Array.contains sections height) then begin
let sections =
Height.Array.extend sections height
(fun _ -> Section.create ())
in
t.sections <- sections;
sections
end else begin
sections
end
let is_initialised t height =
match t.initialised with
| All -> true
| Until until -> Height.less_than height until
let set_initialised t height =
match t.initialised with
| All ->
failwith "Section.set_initialised: already initialised"
| Until until ->
if not (Height.equal until height) then begin
if Height.less_than until height then
failwith "Section.set_initialised: initialised early"
else
failwith "Section.set_initialised: already initialised"
end;
t.initialised <- Until (Height.succ until)
let set_initialised_from t height =
match t.initialised with
| All ->
failwith "Section.set_initialised: already initialised"
| Until until ->
if not (Height.equal until height) then begin
if Height.less_than until height then
failwith "Section.set_initialised: initialised early"
else
failwith "Section.set_initialised: already initialised"
end;
t.initialised <- All
let is_completed t height =
match t.completed with
| All -> true
| Until until -> Height.less_than height until
let set_completed t height =
match t.completed with
| All ->
failwith "Section.set_completed: already completed"
| Until until ->
if not (Height.equal until height) then begin
if Height.less_than until height then
failwith "Section.set_completed: completed early"
else
failwith "Section.set_completed: already completed"
end;
t.completed <- Until (Height.succ until)
let set_completed_from t height =
match t.completed with
| All ->
failwith "Section.set_completed: already completed"
| Until until ->
if not (Height.equal until height) then begin
if Height.less_than until height then
failwith "Section.set_completed: completed early"
else
failwith "Section.set_completed: already completed"
end;
t.completed <- All
let is_finished t =
match t.initialised, t.completed with
| All, All -> true
| _, _ -> false
let get t height =
let sections = t.sections in
if Height.Array.contains sections height then
Some (Height.Array.get sections height)
else None
let check_initialised t height =
match t.initialised with
| All -> ()
| Until until ->
if not (Height.less_than height until) then
failwith "Sections: section not initialised"
let check_completed t height =
match t.completed with
| All -> ()
| Until until ->
if not (Height.less_than height until) then
failwith "Sections: section not completed"
let check_versions t parent =
match t.versioning, parent.versioning with
| Unversioned, _ | _, Unversioned -> ()
| (Completion stamp | Initialisation stamp),
(Completion parent_stamp | Initialisation parent_stamp) ->
if not (History.Stamp.equal stamp parent_stamp) then
failwith "Sections: version mismatch"
let initialise t height parent =
check_versions t parent;
check_completed parent height;
match get parent height with
| Some parent ->
let sections = expand t height in
let section = Height.Array.get sections height in
Section.rebase section parent;
set_initialised t height
| None ->
if is_finished parent then
set_initialised_from t height
else
set_initialised t height
let add_type graph t height typ path =
let sections = expand t height in
let section = Height.Array.get sections height in
Section.add_type graph section typ path
let add_class_type graph t height mty path =
let sections = expand t height in
let section = Height.Array.get sections height in
Section.add_class_type graph section mty path
let add_module_type graph t height mty path =
let sections = expand t height in
let section = Height.Array.get sections height in
Section.add_module_type graph section mty path
let add_module graph t height md path =
let sections = expand t height in
let section = Height.Array.get sections height in
Section.add_module graph section md path
let iter_updates ~type_ ~class_type ~module_type ~module_ t height id =
match get t height with
| Some section ->
Section.iter_updates ~type_ ~class_type
~module_type ~module_ section id;
true
| None -> false
let iter_forwards ~type_ ~class_type ~module_type ~module_ t height id =
let all_initialised =
match t.initialised with
| All -> true
| Until until ->
if not (Height.less_than height until) then
failwith "Sections.iter_forwards: section not initialised";
false
in
match get t height with
| Some section ->
Section.iter_forwards ~type_ ~class_type
~module_type ~module_ section id;
true
| None -> not all_initialised
type result =
| Not_found_here
| Not_found_here_or_later
| Found of Path.t
let rec get_visible_type graph = function
| [] -> None
| path :: rest ->
let visible = Graph.is_type_path_visible graph path in
if visible then Some path
else get_visible_type graph rest
let rec get_visible_class_type graph = function
| [] -> None
| path :: rest ->
let visible = Graph.is_class_type_path_visible graph path in
if visible then Some path
else get_visible_class_type graph rest
let rec get_visible_module_type graph = function
| [] -> None
| path :: rest ->
let visible = Graph.is_module_type_path_visible graph path in
if visible then Some path
else get_visible_module_type graph rest
let rec get_visible_module graph = function
| [] -> None
| (path, _) :: rest ->
let visible = Graph.is_module_path_visible graph path in
if visible then Some path
else get_visible_module graph rest
let find_type graph t height typ =
check_initialised t height;
check_completed t height;
match get t height with
| Some section -> begin
match Section.find_type graph section typ with
| exception Not_found -> Not_found_here
| paths -> begin
match get_visible_type graph paths with
| None -> Not_found_here
| Some path -> Found path
end
end
| None ->
if is_finished t then Not_found_here_or_later
else Not_found_here
let find_class_type graph t height mty =
check_initialised t height;
check_completed t height;
match get t height with
| Some section -> begin
match Section.find_class_type graph section mty with
| exception Not_found -> Not_found_here
| paths -> begin
match get_visible_class_type graph paths with
| None -> Not_found_here
| Some path -> Found path
end
end
| None ->
if is_finished t then Not_found_here_or_later
else Not_found_here
let find_module_type graph t height mty =
check_initialised t height;
check_completed t height;
match get t height with
| Some section -> begin
match Section.find_module_type graph section mty with
| exception Not_found -> Not_found_here
| paths -> begin
match get_visible_module_type graph paths with
| None -> Not_found_here
| Some path -> Found path
end
end
| None ->
if is_finished t then Not_found_here_or_later
else Not_found_here
let find_module graph t height md =
check_initialised t height;
check_completed t height;
match get t height with
| Some section -> begin
match Section.find_module graph section md with
| exception Not_found -> Not_found_here
| paths -> begin
match get_visible_module graph paths with
| None -> Not_found_here
| Some path -> Found path
end
end
| None ->
if is_finished t then Not_found_here_or_later
else Not_found_here
end
type basis
type env
type _ kind =
| Basis :
{ history : History.t; }
-> basis kind
| Env :
{ mutable revision : History.Revision.t;
parent : 'a t;
age : Age.t; }
-> env kind
and 'a t =
{ kind : 'a kind;
mutable graph : Graph.t;
sections: Sections.t Origin_tbl.t;
todos: Todo.t; }
let age (type k) (t : k t) =
match t.kind with
| Basis _ -> Age.zero
| Env { age; _ } -> age
let revision (type k) (t : k t) =
match t.kind with
| Basis { history } -> History.head history
| Env { revision; _ } -> revision
let stamp t =
History.Revision.stamp (revision t)
let rev_deps t =
History.Revision.rev_deps (revision t)
let update (type kind) (t : kind t) =
match t.kind with
| Basis _ -> ()
| Env ({ revision } as e) ->
let rec loop graph revision =
let next = History.Revision.next revision in
match next with
| None -> revision, graph
| Some revision ->
let diff = History.Revision.diff revision in
let graph = Graph.merge graph diff in
let rev_deps = History.Revision.rev_deps revision in
Todo.merge graph rev_deps t.todos diff;
loop graph revision
in
let revision, graph = loop t.graph revision in
t.graph <- graph;
e.revision <- revision
let basis rev_deps components =
let graph, diff = Graph.add Graph.empty components in
let history = History.init rev_deps diff in
let kind = Basis { history } in
let sections = Origin_tbl.create 0 in
let todos = Todo.create graph rev_deps diff in
{ kind; graph; sections; todos }
let local_or_open conc =
match conc with
| Desc.Local -> Component.Local
| Desc.Open -> Component.Open
let env parent desc =
update parent;
let age = Age.succ (age parent) in
let origin = Origin.Environment age in
let components =
List.map
(fun desc ->
match desc with
| Desc.Type(id, desc, conc, dpr) ->
Component.Type(origin, id, desc, local_or_open conc, dpr)
| Desc.Class_type(id, desc, conc, dpr) ->
Component.Class_type(origin, id, desc, local_or_open conc, dpr)
| Desc.Module_type(id, desc, conc, dpr) ->
Component.Module_type(origin, id, desc, local_or_open conc, dpr)
| Desc.Module(id, desc, conc, dpr) ->
Component.Module(origin, id, desc, local_or_open conc, dpr)
| Desc.Declare_type id ->
Component.Declare_type(origin, id)
| Desc.Declare_class_type id ->
Component.Declare_class_type(origin, id)
| Desc.Declare_module_type id ->
Component.Declare_module_type(origin, id)
| Desc.Declare_module id ->
Component.Declare_module(origin, id))
desc
in
let graph, diff = Graph.add parent.graph components in
let revision = revision parent in
let kind = Env { revision; parent; age } in
let sections = Origin_tbl.create 0 in
let rev_deps = History.Revision.rev_deps revision in
let todos = Todo.create graph rev_deps diff in
{ kind; graph; sections; todos }
let mutate (t : basis t) rev_deps components =
let graph, diff = Graph.add t.graph components in
let Basis { history } = t.kind in
History.commit history rev_deps diff;
t.graph <- graph;
Todo.mutate graph rev_deps t.todos diff
let sections t origin =
match Origin_tbl.find t.sections origin with
| exception Not_found ->
let sections = Sections.create (age t) origin in
Origin_tbl.add t.sections origin sections;
sections
| sections -> sections
let update_seen t seen =
Path_set.fold
(fun path acc ->
match acc with
| None -> None
| Some acc ->
let md = Graph.find_module t.graph path in
let path = Module.path t.graph md in
if Path_set.mem path acc then None
else Some (Path_set.add path acc))
seen (Some Path_set.empty)
let process_type t height path typ =
let canonical_path = Type.path t.graph typ in
if not (Path.equal canonical_path path) then begin
let origin = Type.origin t.graph typ in
let sections = sections t origin in
Sections.add_type t.graph sections height typ path
end
let process_module_type t height path mty =
let canonical_path = Module_type.path t.graph mty in
if not (Path.equal canonical_path path) then begin
let origin = Module_type.origin t.graph mty in
let sections = sections t origin in
Sections.add_module_type t.graph sections height mty path
end
let process_class_type t height path mty =
let canonical_path = Class_type.path t.graph mty in
if not (Path.equal canonical_path path) then begin
let origin = Class_type.origin t.graph mty in
let sections = sections t origin in
Sections.add_class_type t.graph sections height mty path
end
let process_module t height path seen md =
let canonical_path = Module.path t.graph md in
if not (Path.equal canonical_path path) then begin
let origin = Module.origin t.graph md in
let sections = sections t origin in
Sections.add_module t.graph sections height md (path, seen);
end;
if not (Path_set.mem canonical_path seen) then begin
let seen = Path_set.add canonical_path seen in
Todo.add_children t.graph (rev_deps t) t.todos height md path seen
end
let process_children t height path seen md =
let types =
match Module.types t.graph md with
| Some types -> types
| None -> String_map.empty
in
let class_types =
match Module.class_types t.graph md with
| Some class_types -> class_types
| None -> String_map.empty
in
let module_types =
match Module.module_types t.graph md with
| Some module_types -> module_types
| None -> String_map.empty
in
let modules =
match Module.modules t.graph md with
| Some modules -> modules
| None -> String_map.empty
in
String_map.iter
(fun name typ ->
if not (Type.hidden typ) then begin
let path = Path.Pdot(path, name) in
process_type t height path typ
end)
types;
String_map.iter
(fun name clty ->
if not (Class_type.hidden clty) then begin
let path = Path.Pdot(path, name) in
process_class_type t height path clty
end)
class_types;
String_map.iter
(fun name mty ->
if not (Module_type.hidden mty) then begin
let path = Path.Pdot(path, name) in
process_module_type t height path mty
end)
module_types;
String_map.iter
(fun name md ->
if not (Module.hidden md) then begin
let path = Path.Pdot(path, name) in
process_module t height path seen md
end)
modules
let rec process : 'k . 'k t -> _ =
fun t origin height ->
let todo = Todo.pop (rev_deps t) t.todos height origin in
match todo with
| None -> true
| Some items ->
List.iter
(function
| Todo.Item.Base (Diff.Item.Type(id, typ, _)) ->
if not (Type.hidden typ) then begin
let path = Path.Pident id in
process_type t height path typ
end
| Todo.Item.Base (Diff.Item.Class_type(id, clty, _)) ->
if not (Class_type.hidden clty) then begin
let path = Path.Pident id in
process_class_type t height path clty
end
| Todo.Item.Base (Diff.Item.Module_type(id, mty, _)) ->
if not (Module_type.hidden mty) then begin
let path = Path.Pident id in
process_module_type t height path mty
end
| Todo.Item.Base (Diff.Item.Module(id, md, _)) ->
if not (Module.hidden md) then begin
let path = Path.Pident id in
process_module t height path Path_set.empty md
end
| Todo.Item.Children{md; path; seen} ->
process_children t height path seen md
| Todo.Item.Update{ id; origin } ->
process_update t origin height id
| Todo.Item.Forward{ id; decl; origin } ->
process_forward t origin height id decl)
items;
false
and process_update : 'k . 'k t -> _ =
fun t origin height id ->
let sections = sections t origin in
let more =
Sections.iter_updates sections height id
~type_:(fun canon path ->
let typ = Graph.find_type t.graph canon in
process_type t height path typ)
~class_type:(fun canon path ->
let clty = Graph.find_class_type t.graph canon in
process_class_type t height path clty)
~module_type:(fun canon path ->
let mty = Graph.find_module_type t.graph canon in
process_module_type t height path mty)
~module_:(fun canon (path, seen) ->
let md = Graph.find_module t.graph canon in
match update_seen t seen with
| None -> ()
| Some seen ->
process_module t height path seen md);
in
if more then begin
Todo.add_next_update (rev_deps t) t.todos height origin id
end
and process_forward : 'k . 'k t -> _ =
fun t origin height id decl ->
let sections = init t decl height in
let more =
Sections.iter_forwards sections height id
~type_:(fun canon path ->
let typ = Graph.find_type t.graph canon in
process_type t height path typ)
~class_type:(fun canon path ->
let clty = Graph.find_class_type t.graph canon in
process_class_type t height path clty)
~module_type:(fun canon path ->
let mty = Graph.find_module_type t.graph canon in
process_module_type t height path mty)
~module_:(fun canon (path, seen) ->
let md = Graph.find_module t.graph canon in
match update_seen t seen with
| None -> ()
| Some seen ->
process_module t height path seen md);
in
if more then begin
Todo.add_next_forward (rev_deps t) t.todos height origin id decl
end
and initialise : type k. k t -> _ =
fun t sections origin height ->
if not (Sections.is_initialised sections height) then begin
begin match Height.pred height with
| None -> ()
| Some pred -> initialise t sections origin pred
end;
let parent =
match t.kind with
| Basis _ -> assert false
| Env { parent; _ } ->
update parent;
force parent origin height
in
Sections.initialise sections height parent
end
and init : 'k . 'k t -> _ =
fun t origin height ->
let sections = sections t origin in
Sections.update sections (stamp t);
initialise t sections origin height;
sections
and complete : 'k. 'k t -> _ =
fun t sections origin height ->
if not (Sections.is_completed sections height) then begin
begin match Height.pred height with
| None -> ()
| Some pred -> ignore (complete t sections origin pred)
end;
let finished = process t origin height in
if finished then Sections.set_completed_from sections height
else Sections.set_completed sections height
end
and force : 'k. 'k t -> _ =
fun t origin height ->
let sections = sections t origin in
Sections.update sections (stamp t);
initialise t sections origin height;
complete t sections origin height;
sections
module Search = struct
type 'a shortest = 'a t
type _ kind =
| Type : Type.t kind
| Class_type : Class_type.t kind
| Module_type : Module_type.t kind
| Module : Module.t kind
type name =
{ name : string;
height : Height.t; }
type 'a t =
| Ident of
{ kind : 'a kind;
node : 'a;
origin : Origin.t;
best : Path.t;
min: Height.t;
max: Height.t;
finished : bool; }
| Dot of
{ kind : 'a kind;
node : 'a;
origin : Origin.t;
best : Path.t;
min: Height.t;
max: Height.t;
parent : Module.t t;
name : name;
searched : bool;
finished : bool; }
| Application of
{ kind : 'a kind;
node : 'a;
origin : Origin.t;
best : Path.t;
min: Height.t;
max: Height.t;
func : Module.t t;
arg : Module.t t;
func_first : bool;
searched : bool;
finished : bool; }
let min_height = function
| Ident { min; _ } -> min
| Dot { min; _ } -> min
| Application { min; _ } -> min
let max_height = function
| Ident { max; _ } -> max
| Dot { max; _ } -> max
| Application { max; _ } -> max
let search_origin = function
| Ident { origin; _ } -> origin
| Dot { origin; _ } -> origin
| Application { origin; _ } -> origin
let finished = function
| Ident { finished; _ } -> finished
| Dot { finished; _ } -> finished
| Application { finished; _ } -> finished
let best = function
| Ident { best; _ } -> best
| Dot { best; _ } -> best
| Application { best; _ } -> best
let min_application fst snd =
Height.plus (min_height fst) (min_height snd)
let max_application fst snd =
Height.plus (max_height fst) (max_height snd)
let min_dot parent name =
let base = min_height parent in
Height.plus base name.height
let path_application fst snd =
Path.Papply(best fst, best snd)
let path_dot parent name =
Path.Pdot(best parent, name.name)
let is_visible_ident (type k) graph (kind : k kind) id =
match kind with
| Type -> Graph.is_type_ident_visible graph id
| Class_type -> Graph.is_class_type_ident_visible graph id
| Module_type -> Graph.is_module_type_ident_visible graph id
| Module -> Graph.is_module_ident_visible graph id
let create (type k) shortest (kind : k kind) canonical_path =
let rec loop : type k. k kind -> Path.t -> k t =
fun kind path ->
let graph = shortest.graph in
let (node : k), origin, hidden =
match kind with
| Type ->
let node = Graph.find_type graph path in
let origin = Type.origin graph node in
let hidden = Type.hidden node in
node, origin, hidden
| Class_type ->
let node = Graph.find_class_type graph path in
let origin = Class_type.origin graph node in
let hidden = Class_type.hidden node in
node, origin, hidden
| Module_type ->
let node = Graph.find_module_type graph path in
let origin = Module_type.origin graph node in
let hidden = Module_type.hidden node in
node, origin, hidden
| Module ->
let node = Graph.find_module graph path in
let origin = Module.origin graph node in
let hidden = Module.hidden node in
node, origin, hidden
in
let best = path in
match path with
| Path.Pident id ->
let max =
if is_visible_ident graph kind id && not hidden then
Height.one
else
Height.maximum
in
let min = Height.one in
let finished = false in
Ident { kind; node; origin; best; min; max; finished }
| Path.Pdot(parent, name) ->
let parent = loop Module parent in
let finished = false in
let name_height =
if not hidden then Height.one
else Height.maximum
in
let name = { name; height = name_height } in
let searched = false in
let max = Height.plus (max_height parent) name_height in
let min = Height.one in
Dot
{ kind; node; origin; best; min; max;
parent; name; searched; finished }
| Path.Papply(func, arg) ->
let func = loop Module func in
let arg = loop Module arg in
let func_first =
Rev_deps.before (rev_deps shortest)
(search_origin arg) (search_origin func)
in
let finished = false in
let searched = true in
let max = max_application func arg in
let min = min_application func arg in
Application
{ kind; node; origin; best; min; max;
func; arg; func_first; searched; finished }
| Path.Pextra_ty _ -> raise Not_found
in
loop kind canonical_path
let find (type k) shortest origin height (kind : k kind) (node : k) =
let sections = force shortest origin height in
match kind with
| Type ->
Sections.find_type shortest.graph sections height node
| Class_type ->
Sections.find_class_type shortest.graph sections height node
| Module_type ->
Sections.find_module_type shortest.graph sections height node
| Module ->
Sections.find_module shortest.graph sections height node
let rec step : type k . _ shortest -> k t -> k t =
fun shortest search ->
if finished search then search
else begin
match search with
| Ident r -> begin
match find shortest r.origin r.min r.kind r.node with
| Sections.Not_found_here ->
if Height.equal r.min r.max then
Ident { r with finished = true }
else
Ident { r with min = Height.succ r.min }
| Sections.Not_found_here_or_later ->
Ident { r with finished = true; min = r.max }
| Sections.Found path ->
let best = path in
let max = r.min in
let finished = true in
Ident { r with best; max; finished }
end
| Dot r ->
let parent = r.parent in
let parent =
let should_try_dot =
Height.equal
(min_dot parent r.name) r.min
in
if not should_try_dot then parent
else step shortest parent
in
let found =
finished parent
&& Height.equal (min_dot parent r.name) r.min
in
if found then begin
let best = path_dot parent r.name in
let max = r.min in
let finished = true in
Dot
{ r with best; parent; max; finished }
end else begin
let best, max, searched, finished =
if r.searched then r.best, r.max, r.searched, r.finished
else begin
match find shortest r.origin r.min r.kind r.node with
| Sections.Not_found_here ->
r.best, r.max, (Height.equal r.min r.max), r.finished
| Sections.Not_found_here_or_later ->
r.best, r.max, true, r.finished
| Sections.Found path ->
path, r.min, true, true
end
in
let finished =
finished ||
(searched
&& Height.less_than_or_equal
r.max (min_dot parent r.name))
in
let min = if finished then max else Height.succ r.min in
Dot { r with best; parent; min; max; searched; finished }
end
| Application r ->
let try_app searched =
let fst, snd =
if r.func_first then r.func, r.arg
else r.arg, r.func
in
let fst, snd =
let should_try_app =
Height.equal (min_application fst snd) r.min
in
if not should_try_app then fst, snd
else begin
let fst = step shortest fst in
let should_try_app =
Height.equal (min_application fst snd) r.min
in
if not should_try_app then fst, snd
else fst, step shortest snd
end
in
let func, arg =
if r.func_first then fst, snd
else snd, fst
in
let found =
finished func && finished arg
&& Height.equal (min_application fst snd) r.min
in
if found then begin
let best = path_application func arg in
let max = r.min in
let finished = true in
Application
{ r with best; func; arg; max; searched; finished }
end else begin
let finished =
searched
&& Height.less_than_or_equal
r.max (min_application fst snd)
in
let min = if finished then r.max else Height.succ r.min in
Application
{ r with func; arg; min; searched; finished }
end
in
if r.searched then try_app true
else begin
match find shortest r.origin r.min r.kind r.node with
| Sections.Not_found_here ->
try_app (Height.equal r.min r.max)
| Sections.Not_found_here_or_later ->
try_app true
| Sections.Found path ->
let best = path in
let max = r.min in
let searched = true in
let finished = true in
Application { r with best; max; searched; finished }
end
end
let rec perform shortest search =
if finished search then best search
else perform shortest (step shortest search)
end
let find_type t path =
update t;
let typ = Graph.find_type t.graph path in
match Type.resolve t.graph typ with
| Type.Nth n -> Nth n
| Type.Path(subst, typ) ->
let canonical_path = Type.path t.graph typ in
let search = Search.create t Search.Type canonical_path in
let path = Search.perform t search in
Path(subst, path)
let find_type_resolution t path : type_resolution =
update t;
let typ = Graph.find_type t.graph path in
match Type.resolve t.graph typ with
| Type.Nth n -> Nth n
| Type.Path(Some ns, _) -> Subst ns
| Type.Path(None, _) -> Id
let find_type_simple t path =
update t;
let typ = Graph.find_type t.graph path in
let canonical_path = Type.path t.graph typ in
let search = Search.create t Search.Type canonical_path in
Search.perform t search
let find_class_type t path =
update t;
let clty = Graph.find_class_type t.graph path in
let subst, clty = Class_type.resolve t.graph clty in
let canonical_path = Class_type.path t.graph clty in
let search = Search.create t Search.Class_type canonical_path in
let path = Search.perform t search in
(subst, path)
let find_class_type_simple t path =
update t;
let clty = Graph.find_class_type t.graph path in
let canonical_path = Class_type.path t.graph clty in
let search = Search.create t Search.Class_type canonical_path in
Search.perform t search
let find_module_type t path =
update t;
let mty = Graph.find_module_type t.graph path in
let canonical_path = Module_type.path t.graph mty in
let search = Search.create t Search.Module_type canonical_path in
Search.perform t search
let find_module t path =
update t;
let md = Graph.find_module t.graph path in
let canonical_path = Module.path t.graph md in
let search = Search.create t Search.Module canonical_path in
Search.perform t search
end
module String_set = Set.Make(String)
module Basis = struct
type load =
{ name : string;
depends : string list;
alias_depends : string list;
desc : Desc.Module.t;
deprecated : Desc.deprecated; }
type t =
{ mutable next_dep : Dependency.t;
mutable pending_additions : String_set.t;
mutable pending_loads : load list;
mutable assignment : Dependency.t String_map.t;
rev_deps : Rev_deps.t;
mutable shortest : Shortest.basis Shortest.t option; }
let create () =
{ next_dep = Dependency.zero;
pending_additions = String_set.empty;
pending_loads = [];
assignment = String_map.empty;
rev_deps = Rev_deps.create ();
shortest = None; }
let update_assignments t additions =
String_set.iter
(fun name ->
if not (String_map.mem name t.assignment) then begin
t.assignment <- String_map.add name t.next_dep t.assignment;
t.next_dep <- Dependency.succ t.next_dep
end)
additions
let update_rev_deps t loads =
Rev_deps.extend_up_to t.rev_deps t.next_dep;
List.iter
(fun { name; depends; alias_depends; _ } ->
let index = String_map.find name t.assignment in
List.iter
(fun dep_name ->
let dep_index = String_map.find dep_name t.assignment in
Rev_deps.add t.rev_deps ~source:dep_index ~target:index)
depends;
List.iter
(fun dep_name ->
let dep_index = String_map.find dep_name t.assignment in
Rev_deps.add_alias t.rev_deps ~source:dep_index ~target:index)
alias_depends)
loads
let update_shortest t additions loads =
let components =
List.map
(fun { name; desc; deprecated; _ } ->
let index = String_map.find name t.assignment in
let origin = Origin.Dependency index in
let id = Ident.global name in
Component.Module(origin, id, desc, Component.Global, deprecated))
loads
in
let components =
String_set.fold
(fun name acc ->
let index = String_map.find name t.assignment in
let origin = Origin.Dependency index in
let id = Ident.global name in
Component.Declare_module(origin, id) :: acc)
additions
components
in
match t.shortest with
| None ->
t.shortest <- Some (Shortest.basis t.rev_deps components)
| Some shortest ->
Shortest.mutate shortest t.rev_deps components
let update t =
let loads = t.pending_loads in
let additions = t.pending_additions in
match loads, String_set.is_empty additions with
| [], true -> ()
| _, _ ->
t.pending_loads <- [];
t.pending_additions <- String_set.empty;
let loads = List.rev loads in
update_assignments t additions;
update_rev_deps t loads;
update_shortest t additions loads
let shortest t =
update t;
match t.shortest with
| None ->
let shortest = Shortest.basis t.rev_deps [] in
t.shortest <- Some shortest;
shortest
| Some shortest -> shortest
let add t name =
t.pending_additions <- String_set.add name t.pending_additions
let load t name depends alias_depends desc deprecated =
let load = { name; depends; alias_depends; desc; deprecated } in
t.pending_loads <- load :: t.pending_loads
end
type state =
| Initial of Basis.t
| Unforced of
{ parent : t;
desc : Desc.t list Lazy.t; }
| Forced of
{ basis : Basis.t;
shortest : Shortest.env Shortest.t; }
and t = state ref
let rec force t =
match !t with
| Initial _ | Forced _ as state -> state
| Unforced { parent; desc } ->
let desc = Lazy.force desc in
let state =
match force parent with
| Unforced _ -> assert false
| Initial basis ->
let shortest = Shortest.env (Basis.shortest basis) desc in
Forced { basis; shortest }
| Forced { basis; shortest } ->
let shortest = Shortest.env shortest desc in
Forced { basis; shortest }
in
t := state;
state
let initial basis = ref (Initial basis)
let add parent desc =
ref (Unforced { parent; desc })
type ext_shortest = Shortest : 'k Shortest.t -> ext_shortest
let shortest t =
match force t with
| Unforced _ -> assert false
| Initial basis ->
Basis.update basis;
Shortest (Basis.shortest basis)
| Forced { basis; shortest } ->
Basis.update basis;
Shortest shortest
let find_type t path =
let Shortest shortest = shortest t in
match Shortest.find_type shortest path with
| exception Not_found -> Path(None, path)
| result -> result
let find_type_resolution t path : type_resolution =
let Shortest shortest = shortest t in
match Shortest.find_type_resolution shortest path with
| exception Not_found -> Id
| subst -> subst
let find_type_simple t path =
let Shortest shortest = shortest t in
match Shortest.find_type_simple shortest path with
| exception Not_found -> path
| path -> path
let find_class_type t path =
let Shortest shortest = shortest t in
match Shortest.find_class_type shortest path with
| exception Not_found -> (None, path)
| result -> result
let find_class_type_simple t path =
let Shortest shortest = shortest t in
match Shortest.find_class_type_simple shortest path with
| exception Not_found -> path
| path -> path
let find_module_type t path =
let Shortest shortest = shortest t in
match Shortest.find_module_type shortest path with
| exception Not_found -> path
| path -> path
let find_module t path =
let Shortest shortest = shortest t in
match Shortest.find_module shortest path with
| exception Not_found -> path
| path -> path